Addendum: 2D homogeneous solutions to the Euler equation
نویسندگان
چکیده
منابع مشابه
Characterization of steady solutions to the 2D Euler equation
Steady fluid flows have very special topology. In this paper we describe necessary and sufficient conditions on the vorticity function of a 2D ideal flow on a surface with or without boundary, for which there exists a steady flow among isovorticed fields. For this we introduce the notion of an antiderivative (or circulation function) on a measured graph, the Reeb graph associated to the vortici...
متن کاملQuasi-periodic solutions of the 2D Euler equation
We consider the two-dimensional Euler equation with periodic boundary conditions. We construct time quasi-periodic solutions of this equation made of localized travelling profiles with compact support propagating over a stationary state depending on only one variable. The direction of propagation is orthogonal to this variable, and the support is concentrated on flat strips of the stationary st...
متن کاملStationary solutions for the 2D stochastic dis- sipative Euler equation
A 2-dimensional dissipative Euler equation, subject to a random perturbation is considered. Using compactness arguments, existence of martingale stationary solutions are proved. Mathematics Subject Classification (2000). Primary 60H15, Secondary 76D05.
متن کاملA Recurrence Theorem on the Solutions to the 2d Euler Equation
In finite dimensions, the Poincaré recurrence theorem can be proved from the basic properties of a finite measure. In infinite dimensions, it is difficult to establish a natural finite measure, especially by extending a finite dimensional finite measure. A natural alternative is the Banach norm which can be viewed as a counterpart of the probability density. An interesting problem is to study t...
متن کاملApproximate travelling wave solutions to the 2D Euler equation on the torus
We consider the two-dimensional Euler equation with periodic boundary conditions. We construct approximate solutions of this equation made of localized travelling profiles with compact support propagating over a stationary state depending on only one variable. The direction or propagation is orthogonal to this variable, and the support is concentrated around flat points of the stationary state....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2017
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605302.2016.1276588